VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (CBCS) I-Semester Backlog Examinations, December-2017

Engineering Mathematics-I

(Common to all Branches)
Time: 3 hours

Note: Answer ALL questions in Part-A and any FIVE from Part-B

$$
\text { Part-A }(10 \times 2=20 \text { Marks })
$$

1. Find Maclurins expansion for $f(x)=x^{3}-3 x^{2}+2 x$.
2. Find the radius of curvature at the origin for the curve $2 x^{3}-3 x^{2} y+4 y^{3}+y^{2}-3 x=0$.
3. If $u=e^{x y z}$ show that $\frac{\partial^{3} u}{\partial x \partial y \partial z}=\left(1+3 x y z+x^{2} y^{2} z^{2}\right) e^{x y z}$
4. If $x=u v$ and $y=\frac{u+v}{u-v}$ find $\frac{\partial(u, v)}{\partial(x, y)}$.
5. Evaluate $\int_{0}^{1} \int_{0}^{x} e^{\frac{y}{x}} d y d x$
6. Evaluate $\iint r^{3} d r d \theta$ over the area bounded between the circles $r=2 \cos \theta$ and $r=4 \cos \theta$.
7. Find a unit vector normal to the surface $x^{3}+y^{3}+3 x y z=3$ at the point $(1,2,-1)$.
8. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$.
9. Examine the convergence of the series $1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+\ldots \ldots \ldots+\frac{1}{\sqrt{n}}$.
10. Test the series $1-\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}-\frac{1}{4 \sqrt{4}}+\ldots \ldots \ldots .$. for convergence and absolute convergence.

Part-B $(5 \times 10=50 \mathrm{Marks})$
11. a) Show that $\frac{x}{e^{x}-1}=1-\frac{x}{2}+\frac{1}{6} \frac{x^{2}}{2} \ldots \ldots$
b) Find the evolute of the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$
12. a) Show that the rectangular solid of maximum volume that can be inscribed in a given sphere is a cube.
b) Expand $\mathrm{e}^{\mathrm{x}} \log (1+\mathrm{y})$ in powers of x and y upto the terms of third degree.
13. a) Evaluate $\iint(x+y) d y d x$ over the first quadrant of the circle $x^{2}+y^{2}=1$.
b) Evaluate $\iint_{0}^{a} \int_{0}^{x+y} \int_{0}^{x+y+z} d z d y d x$
14. a) If the vector $\mathbf{F}=\left(a x^{2} y+y z\right) \mathbf{i}+\left(x y^{2}-x z^{2}\right) \mathbf{j}+\left(2 x y z-2 x^{2} y^{2}\right) \mathbf{k}$ is solenoidal, find the value of ' a ' and also the curl of this solenoidal vector.
b) Evaluate $\iint_{s} \vec{F} \cdot \hat{n} d s$ where $\mathbf{F}=\mathrm{zi}+\mathrm{x} \mathbf{j}-3 \mathrm{y}^{2} \mathbf{z} \mathbf{k}$ and \mathbf{S} is the surface of the cylinder $x^{2}+y^{2}=16$ included in the first octant between $\mathrm{z}=0$ and $\mathrm{z}=5$.
15. a) Test the convergence and absolute convergence of the series $\frac{1}{2(\log 2)^{p}}+\frac{1}{3(\log 3)^{p}}+\frac{1}{4(\log 4)^{p}}+\ldots \ldots(p>0)$
b) Test the convergence of the series $\sum_{n=2} \frac{1}{n(\log n)^{p}}, p>0$
16. a) Find the envelope of the two parameter family of parabola $\sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}=1$ where the two parameters a and b are connected by the relation $\mathrm{a}+\mathrm{b}=\mathrm{c}$, and c is a given constant.
b) Divide 120 into three parts so that the sum of their products taken two at a time shall be maximum.
17. Answer any two of the following:
a) Evaluate $\iiint x^{2} y z d x d y d z$ over the region bounded by the planes $x=0, y=0, z=0$ and $x+y+z=1$.
b) Apply Green's theorem to evaluate $\int_{C}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]$ where C is the boundary of the area enclosed by the x-axis and the upper-half of the circle $x^{2}+y^{2}=a^{2}$.
c) Test the convergence of the series $\frac{3}{7} x+\frac{3 \times 6}{7 \times 10} x^{2}+\frac{3 \times 6 \times 9}{7 \times 10 \times 13} x^{3}+\ldots \ldots \ldots(x>0)$.
\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
 \section*{B.E. (CBCS) I-Semester Main Examinations, December-2017}

Engineering Mathematics-I

(Common to all branches)
Time: $\mathbf{3}$ hours
Note: Answer ALL questions in Part-A and any FIVE from Part-B

$$
\text { Part-A }(10 \times 2=20 \text { Marks })
$$

1. Verify Taylor's theorem for $f(x)=x^{3}-3 x^{2}+2 x$ in $\left[0, \frac{1}{2}\right]$ with Lagrange's remainder up to two terms.
2. Find the radius of curvature at the origin for the curve $2 x^{3}-3 x^{2} y+4 y^{3}+y^{2}-3 x=0$.
3. If $u=e^{x y z}$ show that $\frac{\partial^{3} u}{\partial x \partial y \partial z}=\left(1+3 x y z+x^{2} y^{2} z^{2}\right) e^{x y z}$
4. If $u=x^{2}-y^{2}, v=2 x y$ where $x=r \cos \theta, y=r \sin \theta$ find $\frac{\partial(u, v)}{\partial(r, \theta)}$.
5. Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{d y d x}{1+x^{2}+y^{2}}$
6. Evaluate $\int_{0}^{\pi \sin \theta} \int_{0} r d r d \theta$
7. Find a unit vector normal to the surface $x^{3}+y^{3}+3 x y z=3$ at the point $(1,2,-1)$.
8. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$.
9. Examine the convergence of the series $\frac{3}{5}+\frac{4}{5^{2}}+\frac{3}{5^{3}}+\frac{4}{5^{4}}+$ \qquad
10. If $\sum u_{n}$ is a series of positive terms then prove that $\lim _{n \rightarrow \infty} u_{n}=0$.

Part-B $(5 \times 8=40 \mathrm{Marks})$
(All bits carry equal marks)
11. a) Expand $e^{\sin x}$ by Maclaurin's series up to the term containing x^{4}.
b) Find the coordinates of the centre of curvature at any point (x, y) on the parabola $y^{2}=4 \mathrm{ax}$. Also find the equation of the evolute of the parabola.
12. a) Find the extreme values of the function $x^{3}+y^{3}-3 x-12 y+20$.
b) Find the minimum and maximum distance from the point $(1,2,2)$ to the sphere $x^{2}+y^{2}+z^{2}=36$.
13. a) Evaluate $\iint \sqrt{\frac{1-x^{2}-y^{2}}{1+x^{2}+y^{2}}} d x d y$ over the first quadrant of the circle $x^{2}+y^{2}=1$.
b) Evaluate $\int_{0}^{a} \int_{0}^{x+y} \int_{0}^{x+y} e^{x+y+z} d z d y d x$
14. a) If the vector $F=\left(a x^{2} y+y z\right) i+\left(x y^{2}-x z^{2}\right) j+\left(2 x y z-2 x^{2} y^{2}\right) k$ is solenoidal, find the value of ' a ' and also the curl of this solenoidal vector.
b) Evaluate $\iint_{s} \vec{F} \cdot \hat{n} d s$ where $\mathrm{F}=\mathrm{zi}+\mathrm{xj}-3 \mathrm{y}^{2} \mathrm{zk}$ and S is the surface of the cylinder $x^{2}+y^{2}=16$ included in the first octant between $z=0$
15. a) Discuss the convergence of $\frac{1}{2 \sqrt{1}}+\frac{x^{2}}{3 \sqrt{2}}+\frac{x^{4}}{4 \sqrt{3}}+\frac{x^{6}}{5 \sqrt{4}}+$ \qquad
b) Test the series $\frac{x}{\sqrt{3}}-\frac{x^{2}}{\sqrt{5}}+\frac{x^{3}}{\sqrt{7}}-\ldots$. for absolute and conditional convergence
16. a) Show that the radius of curvature at any point of the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ is equal to three times the length of the perpendicular from the origin to the tangent at that point.
b) If $z=f(u, v), u=\log \left(x^{2}+y^{2}\right), v=y / x$, show that $x \frac{\partial z}{\partial y}-y \frac{\partial z}{\partial x}=\left(1+v^{2}\right) \frac{\partial z}{\partial v}$.
17. Answer any two of the following:
a) Evaluate $\iiint x^{2} y z d x d y d z$ over the region bounded by the planes $x=0, y=0, z=0$ and $x+y+z=1$.
b) Apply Green's theorem to evaluate $\int_{C}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]$ where C is the boundary of the area enclosed by the x-axis and the upper-half of the circle $x^{2}+y^{2}=a^{2}$.
c) Test the convergence of the series

$$
\frac{3}{7} x+\frac{3 \times 6}{7 \times 10} x^{2}+\frac{3 \times 6 \times 9}{7 \times 10 \times 13} x^{3}+
$$.$(x>0)$.

